DEPARTMENT OF THE INTERIOR

U.S. GEOLOGICAL SURVEY

GEONAMES Data Base of Geologic Names of the United States through 1988

Compiled by

G.W. Luttrell¹

M.L. Hubert¹

C.R. Murdock¹

Open-File Report 90-0466-K

This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards.

¹Reston, VA 22092

GEONAMES Data Base of Geologic Names of the United States Through 1988

The GEONAMES data base is an annotated index lexicon of formal geologic nomenclature of the United States, its territories and possessions. The data base was compiled by R. W. Swanson, M. L. Hubert, G. W. Luttrell, and V. M. Jussen and was published in 1981 as Geologic names of the United States through 1975: U.S. Geological Survey Bulletin 1535, 643 p. This version of GEONAMES has been updated based on information published through 1988, and it contains approximately 30,000 records relating to more than 18,000 names.

Data are entered in 10 fixed fields containing up to 123 characters of information for each record. The fields are:
1. location of unit; 2. geologic age; 3. name of unit; 4. USGS usage; 5. lithology; 6. geologic province; 7. thickness at type section; 8. location of type section; 9. lexicon reference;
10. unique identifier.

DEFINITION OF FIELDS. The formats and codes used in the fields are explained below. Fields 5, 6, 7, 8, and 9 are used only once for each unit as this information pertains to its type locality and original reference.

FIELD 1. LOCATION. The U.S. Postal Service 2-letter abbreviations are used to identify the State, territory, or possession in which the unit is located.

AL	Alabama	NH	New Hampshire
AK	Alaska	NJ	New Jersey
AZ	Arizona	NM	New Mexico
AR	Arkansas	NY	New York
CA	California	NC	North Carolina
CO	Colorado	ND	North Dakota
CT	Connecticut	он	Ohio
DC	District of Columbia	OK	Oklahoma
DE	Delaware	OR	Oregon
FL	Florida	PA	Pennsylvania
GA	Georgia	RI	Rhode Island
HI	Hawaii	SC	South Carolina
ID	Idaho	SD	South Dakota
IL	Illinois	TN	Tennessee
IN	Indiana	TX	Texas
IA	Iowa	UT	Utah
KS	Kansas	VT	Vermont
KY	Kentucky	VA	Virginia
LA	Louisiana	WA	Washington
ME	Maine	WV	West Virginia
MD	Maryland	WI	Wisconsin
MA	Massachusetts	WY	Wyoming
MI	Michigan	CZ	Canal Zone
MN	Minnesota	CI	Caroline Islands
MS	Mississippi	GU	Guam
MO	Missouri	MR	Mariana Islands
MT	Montana	PR	Puerto Rico
NE	Nebraska	SA	Samoa
NV	Nevada	VI	Virgin Islands

Ť

FIELD 2. GEOLOGIC AGE. The geologic age at the time of the last update is represented, with minor modifications, by the 3-digit code devised by the AAPG Committee on Standard Stratigraphic Coding.

ERA	PERI	מס	EPOCH OR PROVINCIAL SERIES	CODE
Cenozoic				100
late				101
middle				104
early		•		107
	Quat	ernary		110
			Holocene	111
			Pleistocene	112
	Tert	iary		120
•			Pliocene	121
			Miocene	122
			Oligocene	123
			Eocene	124
			Paleocene	125 200
Mesozoic				200
late				201
middle				207
early	Cant	aceous		210
	C: E	,aceous	Late	211
		·	Gulfian	212
			Comanchean	213
			Early	217
			Comanchean	218
			Coahuilan	219
	Jura	ssic		220
			Late	221
			Middle .	224
			Early	227
	Tria	ssic		230
			Late	231
			Middle	234
			Early	237
Paleozoic				300
late				301
middle				304 30 7
early	5 -	• _		310
	Perm	nian	Late	310
			Ochoan	312
			Guadalupian	313
			Early	317
			Leonardian	318
			Wolfcampian	319
			vvo i i campitari	

ERA	PERIOD	EPOCH OR PROVINCIAL SERIES	CODE
	Pennsylvania	n Late Virgilian Missourian Middle Des Moinesian Atokan Early	320 321 322 323 324 325 326 327
	Mississippia	Morrowan	328 330 331 332 333 337 338 339
	Devonian	Late Middle Early	340 341 344 347
	Silurian	Late Middle Early	350 351 354 357
	Ordovician	Late Middle Early	360 361 364 367
	Cambrian	Late Middle ; Early	370 371 374 377
TIME	EON	ERA	CODE
Precambrian	Proterozoic	Late Middle Early	400 401 410 420 430
	Archean	Late Middle Early	404 440 450 460
	pre-Archean	,	407

FIELD 3. NAME. The geologic name consists of a geographic name combined with a rank or descriptive term. A comma separates the two parts of the name. If a unit is part of a higher ranking unit, the name of that unit follows in parentheses. A slash (/) preceding a name indicates a violation of the North American Stratigraphic Code (for instance, a name may have been used previously in the same area, or a rank term may have been used improperly or may have been omitted).

FIELD 4. USGS USAGE. A "U" is entered in this field if the line entry is based on usage in a USGS report.

FIELD 5. LITHOLOGY. The principal lithology of the unit at the type section is given. If lithology is indicated by the unit name, the lithology column may be blank.

AGL	agglomerate	GNS	greenstone	NVC	novaculite
ALV	alluvium	GR	granite	OBS	obsidian
AMP	amphibolite	GRD	granodiorite	OOL	oolite
AND	andesite	GRNL	granulite	PCL	pyroclastics
ANH	anhydrite	GVL	gravel	PHL	phyllite
ANR	anorthosite	GYK	graywacke	PHS	phosphate
ARG	argillite	GYP	gypsum	PMC	pumice
ARK	arkose	HNF	hornfels	POR	porphyry .
ASP	asphalt	IG	igneous rock	QZ	quartz
BAS	basalt	IGNM	ignimbrite	QZD	quartz diorite
BAUX	bauxite	INTR.	intrusive rock	QZM	quartz monzonite
BNT	bentoni te	LAT	latite	RDBD	redbed
BRC	breccia	LOS	loess	RHY	rhyolite
CH	chert	LV	lava	SCH	schist
CL	clay	MBL	marble	SD	sand
CLS	claystone	MBNT	metabentonite	SED	sedimentary rock
CST	clastic rock	MCK	muck	SL	slate
DAC	dacite	MD	mud	SRP	serpentinite
DBS	diabase	MET	metamorphic rock	ST .	silt
DRT	diorite	MGM	migmatite	SYN	syenite
DRF	drift	MGYK	metagraywacke	TF	tuff
DTM	diatomite	MIG	metaigneous rock	TL	till
EVP	evaporite	MRL	marl	TRC	trachyte
FE	iron-formation	MS	mudstone	ULTM	ultramafic rock
GAB	gabbro	MSED	metasedim. rock	VOL	volcanic rock
GLC	glauconite	MSTS	metasiltstone	VSED	volcanic sed.
GN	gneiss	MVOL	metavolcanic rock		

FIELD 6. GEOLOGIC PROVINCE. The 3-digit geologic province code devised by the AAPG Committee on Statistics of Drilling is used.

100	New England province
110	Adirondack uplift
120	Atlantic Coast basin
130	South Georgia-North
	Florida sedimentary province
140	South Florida province
150	Piedmont-Blue Ridge province
160	Appalachian basin
200	Warrior basin
210	Mid-Gulf Coast basin
220	Gulf Coast basin
230	Arkla basin

```
240
         Desha basin
250
         Upper Mississippi embayment
260
         East Texas basin
300
         Cincinnati arch
305
         Michigan basin
310
         Wisconsin arch
315
         Illinois basin
350
         Sioux uplift
325
         Iowa shelf
330
         Lincoln anticline
335
         Forest City basin
340
         Ozark uplift
345
         Arkoma basin
         South Oklahoma folded belt province
350
355
         Chautauqua platform
360
         Anadarko basin
365
         Cherokee basin
370
         Nemaha anticline
375
         Sedgwick basin
380
         Salina basin
385
         Central Kansas uplift
390
         Chadron arch
395
         Williston basin
400
         Ouachita tectonic belt province
405
         Kerr basin
410
         Llano uplift
415
         Strawn basin
420
         Fort Worth syncline
425
         Bend arch
430
         Permian basin
435
         Palo Duro basin
440
         Amarillo arch
445
         Sierra Grande uplift
450
         Las Animas arch
455
         Las Vegas-Raton basin
460
         Estancia basin
465
         Orogrande basin
470
         Pedregosa basin
         Basin-and-Range province
475
500
         Sweetgrass arch
505
         Montana folded belt province
         Central Montana uplift
510
515
         Powder River basin
520
         Big Horn basin
525
         Yellowstone province
530
         Wind River basin
         Green River basin
535
540
         Denver basin
545
         North Park basin
         South Park basin
550
         Eagle basin
555
560
         San Luis basin
565
         San Juan Mountain province
570
         Uinta uplift
575
         Uinta basin
580
         San Juan basin
585
         Paradox basin
590
         Black Mesa basin
```

595	Piceance basin
600	Northern Cascade Range-Okanagan province
605	Eastern Columbia basin
610	Idaho Mountains province
615	Snake River basin
620	Southern Oregon basin
625	Great Basin province
630	Wasatch uplift
635	Plateau sedimentary province
640	Mojave basin
645	Salton basin
650	Sierra Nevada province
700	Bellingham basin
705	Puget Sound province
710	Western Columbia basin
7,15	Klamath Mountains province
720	Eel River basin
725	Northern Coast Range province
730	Sacramento basin
735	Santa Cruz basin
740	Coastal basins
745	San Joaquin basin
750	Santa Maria basin
755	Ventura basin
760	Los Angeles basin
765	Capistrano basin ,
800	Heceta Island area
805	Keku Islands area
810	Gulf of Alaska basin
815	Copper River basin
820	Cook Inlet basin
830	Kandik province
835	Kobuk province
840	Koyukuk province
845	Bristol Bay basin
846	Aleutians Íslands
850	Bethel basin
855	Norton basin
860	Selawik basin
863	Yukon Flats basin
865	Lower Tanana basin
867	Middle Tanana basin
870	Upper Tanana basin
873	Galena basin
875	Innoko basin
877	Minchumina basin
880	Holitna basin
885	Arctic Foothills province
890	Arctic Slope basin
	•

- FIELD 7. THICKNESS. Thickness at the type section, in meters, rounded to the second significant figure is shown. Where this information is unavailable, the maximum thickness is given, if known.
- FIELD 8. TYPE LOCALITY. One of nine parts of the State in which the type section, locality, or area of a unit is located. Each State is divided into nine parts, designated NW, NC, NE, WC, C, EC, SW, SC, SE, by dividing its maximum latitudinal and longitudinal dimensions by three. Canada and Mexico are designated by CAN AND MEX.
- FIELD 9. REFERENCE. The letters A through H refer to the volume of the lexicon of Geologic Names in which a name was first described:
- A. Wilmarth, M. G., 1938, Lexicon of geologic names of the United States: U.S. Geol. Survey Bull. 896, 2 v.
- B. Wilson, Druid, and others, 1957, Geologic names of North America introduced in 1936-1955: U.S. Geol. Survey Bull. 1056-A, 405 p.
- C. Keroher, G. C., and others, 1966, Lexicon of geologic names of the United States for 1936-1960: U.S. Geol. Survey Bull. 1200, 3 v.
- D. Keroher, G. C., 1970, Lexicon of geologic names of the United States for 1961-1967: U.S. Geol. Survey Bull. 1350, 848 p.
- E. Luttrell, G. W., Hubert, M. L., Wright, W. B., Jussen, V. M., and Swanson, R. W., 1981, Lexicon of geologic names of the United States for 1968-1975: U.S. Geol. Survey Bull. 1520, 342 p.
- F. Luttrell, G. W., Hubert, M. L., and Jussen, V. M., 1986, Lexicon of new formal geologic names of the United States 1976-1980: U.S. Geol. Survey Bull. 1564, 191 p.
- G. Luttrell, G. W., Hubert, M. L., and Murdock, C. R., (in press),

 Lexicon of new formal geologic names of the United States

 1981-1985: U.S. Geol. Survey Bull. 1565.
- H. Geologic names introduced after 1985. (No publication available.)

FIELD 10. UNIQUE IDENTIFIER. A unique identifier consisting of a four-letter mnemonic plus a two-digit number is assigned to each record. It is used for recalling records for updating and for sorting. The mnemonic is derived from the geographic part of the name using a method devised by the AAPG Committee on Standard Stratigraphic Coding. English articles and prepositions are deleted first; those in foreign languages are retained. The first letter of each remaining word is retained. Names beginning with Mc, O', De, or Van are treated as two words. Letters are then deleted, from right to left, in the following order until four remain: a, e, i, o, u, w, h, y, one of each double, t, n, s, r, l, d, c, m, f, g, p, k, b, v, x, j, q, z. All the records for each name have the same mnemonic but different numbers.

DATA RETRIEVAL

GEONAMES is now available on IBM-compatible 5 1/4-in diskettes from Open File Services. The files were first sorted by state and then downloaded onto 16 diskettes, each one generally containing data for two or more adjacent states. Users may purchase one or more diskettes, combine the states, or use them individually, depending upon their specific needs and computer equipment. These state files can be loaded into and manipulated with almost any database management software. (Records are loaded into dBase, for instance, using the command "append from [file name] sdf.") In setting up fields, use the following parameters.

FIELD NAME	SIZE
[State]	[4]
[Age]	[4]
[Slash]	[1]
[Name]	[62]
[Use]	[5]
[Lith]	[14]
[Prov]	[6]
[Thick]	[10]
[TypLoc]	[6]
[Ref]	[4]
[[D]	·[7]

The slash has been placed in a separate field in order to simplify sorting.

GEONAMES is also available on 8-track magnetic tape from NTIS. Units for the entire nation are listed alphabetically on the tape. This media may be more suitable for users interested in geologic names of the United States as a whole.

Following is a breakdown by diskette, showing the states, number of records, and the approximate size of the files. An asterisk indicates states included in more than one geographic grouping. Each diskette also contains the document, Geointro, a users guide to GEONAMES.

CHAPTER	DISK	#	STATE	RECORDS	KBYTES
А	1		ME NH VT MA CT RI	436 246 592 353 316 61	55 31 74 44 40 8
				2004	252
В	2		NY PA	1260 1143	158 143
•				2403	301
С	3		NJ MD DE DC VA* WV	263 484 73 34 881 597	33 61 9 4 110 75
				5335	292
D	4		KY TN MS AL	575 637 218 517	72 80 27 65
				1947	244
E	5		VA* NC SC GA FL	881 348 166 591 229 ————	110 44 21 74 29 —
F	6		ОН	547	69
·	_		IN IL WI MI	502 743 413 408	63 93 52 51
				2613	328
G	7		MN ND SD NE I A	304 326 295 476 542	38 41 37 60 68
				1943	244

CHAPTER	DISK	#	STATE	RECORDS	KBYTES
н	8		OK KS MO	1098 658 740	137 82 93
				2496	312
I	9		TX LA AR	1 653 270 268	207 34 34
				2191	275
J	10		MT WY ID*	809 855 693	101 107 87
				2357	295
К	11		CO NM	881 1151	110 144
				5035	254
L	12		AZ UT*	892 1191	112 149
				2083	261
M	13		WA OR ID*	694 557 693	87 70 87
				1944	244
N	14		NV UT*	1110 1191	139 149
				2301	288
0	15		CA	2050	234
P	16		AK HI CI MR SG PR VI	813 90 45 43 34 33 261 31	102 12 6 5 4 33 4
				1350	172